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Abstract: This study investigates biofilm–flow interactions in gravel-bed rivers using a
novel numerical model. Traditional hydrodynamic models often overlook biofilm-induced
roughness coupling, prompting the development of a mesoscopic Lattice Boltzmann
Method (LBM) framework that dynamically links biofilm thickness to equivalent rough-
ness. Key insights include a dual-phase mechanism: moderate biofilm growth reduces
hydraulic resistance by smoothing gravel pores, while excessive growth increases resistance
via flow obstruction. Validated against 65-day flume experiments, the model accurately
predicted biomass (ash-free dry mass) and velocity profiles. Current limitations involve
reliance on empirical biofilm formulas, lack of natural river validation (non-uniform sub-
strates, dynamic flows), and computational barriers in 3D large-scale simulations. Future
directions include integrating biogeochemical factors (temperature, nutrients), multiscale
microbial-morphology frameworks, and GPU-accelerated high-resolution modeling.
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1. Introduction
River hydrodynamics serve as a crucial environmental factor governing both contami-

nant transport and water quality [1]. Sustainable management of riverine ecosystems is
critical for addressing global challenges such as water scarcity and pollution. Gravel-bed
rivers, as a representative fluvial morphology, provide ideal colonization spaces for micro-
bial communities through their abundant porous structures. Notably, biofilm development
can significantly alter hydraulic characteristics within channels [2]. Therefore, investigating
the interaction mechanisms between biofilm and hydrodynamics in gravel-bed rivers holds
substantial guidance value for optimizing ecological restoration projects in such aquatic
systems [3].

Gravel-bed rivers (GBRs), prevalent in mountainous and alluvial plain environments,
exhibit distinct hydrodynamic properties and bed roughness characteristics that profoundly
govern flow resistance distribution, sediment transport regimes, and ecological function-
ality. Studies have demonstrated that rough gravel beds alter flow structures through
dual-scale mechanisms: at the microscale, surface friction induced by discrete particles
amplifies near-bed velocity gradients [4]; at the macroscale, bedform geometry triggers flow
separation, leading to significant heterogeneity in vertical velocity distribution [5]. These
coupled mechanisms constitute the core components of total resistance coefficients—surface
friction and form drag, with the latter arising from bedform-induced flow separation,
turbulent bursting, and energy dissipation processes [6]. Experimental hydrodynamics
reveals the dominance of form drag: when the D50 particle size exceeds a critical threshold
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(typically >5 mm), form drag contributes 60–80% of the total bed shear stress [7]. High-
resolution PIV measurements confirm that gravel protrusions and spatial arrangements
induce periodic shedding of horseshoe vortices and wake vortices, with these coherent
structures significantly enhancing turbulent kinetic energy production and dissipation [8].
Notably, van der Mark et al. [9] demonstrated through variable-slope flume experiments
that when the width-to-depth ratio (B/H) exceeds 20, the contribution of bedforms to
resistance coefficients decays exponentially, although abrupt bedform transitions down-
stream can provoke localized resistance surges exceeding 40%. Biofilm colonization can
elevate roughness values by 1.5–2 times baseline levels [10]. Through controlled flume
experiments, they developed an empirical model linking biofilm thickness to Manning’s
coefficient. Advanced investigations further uncover hydrodynamic-biofilm interactions:
beyond critical velocities (~0.8 m/s), elevated shear stresses induce biofilm sloughing.
This dynamic equilibrium modulates flow resistance through continuous adjustments of
equivalent roughness height, governed by biofilm structural parameters including hyphal
density and porosity [11].

Numerical modeling has emerged as a pivotal tool in fluvial hydrodynamics re-
search, providing cost-effective alternatives to physical experiments, while enabling high-
resolution analysis of flow mechanisms across spatiotemporal scales [12–14]. Contem-
porary hydrodynamic simulations predominantly employ three classical discretization
frameworks: (1) Finite Volume Method (FVM) excels in mass conservation for open-channel
flows, making it the cornerstone of industrial-standard software like ANSYS Fluent V6.3
and MIKE 21 series [15,16]; (2) Finite Element Method (FEM) demonstrates superior adapt-
ability in handling irregular bathymetry through flexible mesh generation, as implemented
in TELEMAC-MASCARET [17]; (3) Finite Difference Method (FDM) remains prevalent
in large-scale river network modeling due to its computational efficiency, exemplified by
HEC-RAS [18]. The past decade has witnessed a paradigm shift toward mesoscopic ap-
proaches, particularly Lattice Boltzmann Method (LBM), which resolves flow fields through
kinetic theory-based particle interactions [19]. Unlike continuum-based methods, LBM
inherently accommodates complex boundaries (e.g., boulder clusters, vegetation canopies)
without explicit interface tracking algorithms [20]. Case studies reveal LBM’s exceptional
performance in scenarios where traditional methods falter.

This study conducts an in-depth investigation into the theoretical limitations of tra-
ditional hydrodynamic modeling for gravel-bed channels. While existing models have
incorporated the influence mechanisms of gravel substrate roughness on flow dynamics,
they fail to effectively characterize the coupling effects of biofilm dynamic evolution pro-
cesses on channel bed boundary conditions. Notably, there remains a lack of systematic
research on the spatiotemporal growth patterns of biofilms and their modulation mecha-
nisms on channel roughness parameters, which constitutes a critical scientific challenge
constraining the improvement of predictive accuracy in hydrodynamic models. To address
this, the study innovatively develops a hydrodynamic numerical model for gravel-bed
slopes that integrates biofilm growth effects, by synthesizing multi-source experimental
observations and theoretical analysis methods. The research employs the Lattice Boltz-
mann Method (LBM) to establish the numerical computation framework, leveraging its
mesoscopic modeling advantages to effectively capture microscopic flow characteristics
at complex solid–liquid interfaces. Through establishing a dynamic correlation model
between biofilm thickness and roughness parameters, the study successfully achieves
refined simulation of hydrodynamic characteristics in channels across different stages of
biofilm lifecycles. The developed modeling methodology not only addresses the theoretical
deficiencies of conventional models, but also establishes a new numerical experimental
platform for investigating hydrodynamic properties in ecological river systems, thereby
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providing theoretical foundations and technical support for relevant engineering practices.
By elucidating biofilm-mediated hydrodynamic interactions, this study bridges the gap
between ecological restoration and hydraulic engineering, offering a pathway to optimize
river management for both environmental sustainability and human needs.

2. Materials and Methods
2.1. Numerical Model
2.1.1. Hydraulic Model

The Lattice Boltzmann Method (LBM) offers unique advantages for sustainable hydrol-
ogy. Unlike conventional CFD methods, LBM efficiently simulates multi-scale interactions
between biofilm microstructure and macro-scale flow patterns [21]. This capability is criti-
cal for predicting long-term ecological outcomes, such as how biofilm succession under
climate change scenarios (e.g., intensified droughts) alters river resilience.

For hydrodynamic simulations in gravel-bedded channels, the channel can be divided
into two zones: the gravel layer and the flow layer. The primary distinction between
the governing equations for these two zones lies in the drag force terms. As shown
in Equation (1), the flow resistance in the flow layer primarily originates from the bed
roughness, while the flow resistance in the gravel layer mainly arises from the drag forces
generated by both the gravels and biofilms.

∂ui
∂t +

∂(uiuj)
∂t = (ν + νe)

∂2ui
∂xjxj

− g ∂zb
∂xi

− Sbi Flow layer

∂ui
∂t +

∂(uiuj)
∂t = (ν + νe)

∂2ui
∂xjxj

− g ∂zb
∂xi

− Fs − Fb Gravel Layer
(1)

where the Einstein summation convention over lattice indices is adopted; t denotes the
time; ui is the velocity; ν and νe represent kinematic and eddy viscosity, respectively; and
zb is the bed elevation; Fs is the volumetric force generated by porous materials; and Fb is
the volumetric force generated by biofilm.

Sbi is the bed shear stress term in the i direction and expressed as a Manning formula

Sbi =
gns

2

h1/3 ui
√

ujuj (2)

where ns refers to Manning’s coefficient and h is the water depth.
As shown in Figure 1a, the bed roughness coefficient is solely governed by the in-

trinsic roughness of the gravel substrate prior to biofilm colonization. During biofilm
development, the roughness coefficient exhibits significant correlation with biofilm devel-
opment. Experimental studies demonstrate a dual-phase modulation mechanism: (i) In
gravel-bed channels, moderate biofilm colonization fills interstitial pores between substrate
particles (Figure 1b), effectively smoothing the bed surface and consequently reducing
hydraulic roughness. (ii) However, when biofilm accumulation exceeds critical thickness
thresholds surpassing gravel protrusions (Figure 1c), it initiates flow obstruction through
emergent biological structures, thereby augmenting overall roughness. This nonlinear rela-
tionship suggests that bed roughness constitutes a composite function of intrinsic substrate
roughness and dynamic biofilm thickness parameters.

ns = n + κ(γ − γs)
2 (3)

where n denotes the roughness coefficient of biofilm-free gravel-bed substrate, κ represents
the constant coefficient, and γs signifies the critical width of biofilm for gravel-bed channels.
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Figure 1. Temporal dynamics of biofilm growth cycles on gravel-bed slopes: (a) 7 days after inoculum,
(b) 14 days after inoculum, (c) 30 days after inoculum.

The bed roughness coefficient of gravel-bed channels correlates with the characteristic
particle diameter D50, which can be mathematically represented by the following governing
equation [22]

n = 0.59D0.179
50 (4)

Regarding the flow resistance exerted by gravel substrates, we conceptualize this phe-
nomenon as rigid vegetation with variable diameters following Huai et al. [23]. For biofilm-
colonized gravels, biological growth is assumed to effectively increase the equivalent gravel
thickness (Figure 2). This modification leads to the reformulated governing equation.

S f i =
1
2

CDau2
i (5)

where CD is the coefficient of the rigid vegetation which can be assumed as 1 [24], a is the
vegetation density coefficient and a = α × (d + 2db), d is the diameter of vegetation, α is
the vegetation number per m2, and db is the width of biofilm.

 

Figure 2. The width of gravel and biofilm.

The LBM has emerged as a well-established computational framework for simulat-
ing hydrodynamic processes in both open-channel flows and porous media systems, as
evidenced by recent advancements in the field [25]. Building upon this methodological
foundation, the present study employs LBM to resolve the velocity distribution charac-
teristics inherent to gravel-bed flow dynamics. At its core, the LBM algorithm operates
through two sequential, particle-based computational phases: (1) collision processes gov-
erning microscopic momentum redistribution and (2) streaming (propagation) mechanisms
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dictating mesoscopic particle transport. These fundamental operations are mathematically
formalized through the following governing equations

fε(x + eε∆t, t + ∆t) = fε(x, t)− 1
τt

[
fε(x, t)− f eq

ε (x, t)
]
+

∆t
Nεe2 eεiFi (6)

where fε represents the distribution function of particles; f eq is the local equilibrium
distribution function; x is the space vector in Cartesian coordinates; e = ∆x/∆t; ∆x is the
lattice size; ∆t is the time step; τt is the total relaxation time parameter; and Fi denotes the
external forces.

Nε is a constant that can be defined as follows:

Nε =
1
e2 ∑ε

eεieεi (7)

This study employs the widely recognized D2Q9 lattice configuration of the Discrete
Boltzmann Model (Figure 3) to simulate two-dimensional hydrodynamic systems, consis-
tent with established numerical frameworks [26,27]. Within this computational paradigm,
the discrete velocity set eε, a fundamental component governing particle dynamics in the
D2Q9 scheme, is mathematically defined as follows.

eε =


(0, 0), ε = 0

e
[
cos (α−1)π

4 , sin (α−1)π
4

]
, ε = 1, 2, 3, 4

√
2e
[
cos (α−1)π

4 , sin (α−1)π
4

]
, ε = 5, 6, 7, 8

(8)

Figure 3. Distribution functions at the boundaries.

The local equilibrium distribution function f eq in the lattice Boltzmann framework is
formulated as

f eq
ε =


1 − 5g

6e2 − 2
3e2 uiui, ε = 0

g
6e2 +

1
3e2 eεiui +

1
2e4 eεieεjuiuj − 1

6e2 uiui, ε = 1, 2, 3, 4
g

24e2 +
1

12e2 eεiui +
1

8e4 eεieεjuiuj − 1
24e2 uiui, ε = 5, 6, 7, 8

(9)

The relaxation time parameter τt, which governs the rate of approach to local equilib-
rium in lattice Boltzmann simulations, can be determined using the formulation proposed
by Liu et al. [28]

τt =
τ +

√
τ2 + 18C2

s /(e2)
√

∏ ij∏ ij

1
(10)

∏ ij = ∑ε
eεieεj

(
fα − f eq

α

)
(11)

where τ denotes the single-relaxation time and Cs is the Smagorinsky constant.
The external force components Fεi, accounting for momentum exchange mechanisms

within the coupled fluid-vegetation system, are formulated separately for the hydrody-
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namic boundary layer (Flow Layer) and vegetative canopy region (Gravel Layer) through
the following Fεi = −g ∂zb

∂xi
− gn2

h
1
3

ui
√ujuj Flow layer

Fεi = −g ∂zb
∂xi

− 1
2 CDau2

i Gravel Layer
(12)

The external force term is numerically evaluated through midpoint quadrature inte-
gration, spatially discretized at the geometric centroid between adjacent lattice nodes in the
computational domain, as

Fεi = Fεi

(
xi +

1
2

eεi∆t, t
)

(13)

2.1.2. Biofilm Growth and Detachment Model

The traditional approach employs the Monod model to simulate biofilm dynamics [29].
The Monod equation regulates the microbial specific growth rate through substrate concen-
tration, emphasizing the dominant role of external substrate limitation; however, it does not
account for the influence of flow velocity on biofilm formation. Graba et al. [30] proposed a
model that replaces substrate limitation with a self-inhibition term based on biomass den-
sity, reflecting the inhibitory effects of internal spatial competition or metabolic byproduct
accumulation within biofilms (Equation (14)). This approach is more applicable to open
systems where substrates are abundant, but physical space is constrained. Additionally,
this model innovatively introduces a detachment term linearly correlated with hydraulic
shear intensity and the roughness Reynolds number, directly coupling hydrodynamic
conditions with biofilm dynamics. This addresses the limitation of the Monod model,
which focuses solely on growth, while neglecting physical detachment processes. This
improvement enables the model to dynamically characterize the equilibrium mechanism
between biofilm growth and detachment, providing a more comprehensive theoretical
framework for simulating biofilm-mediated ecological processes in complex flow fields.

dB
dt

= µmaxB
1

1 + kinvB
− Cdetk+B (14)

where Cdet (s/m3/d) is an empirical detachment coefficient, and k+ (m3/s) is the Roughness
Reynolds number, t (days) is the time, µmax (d−1) is the maximum specific growth rate at the
reference temperature 20 ◦C, kinv (m2/g) is the inverse half-saturation constant for biomass.

The parameters of Equation (15) are given as Table 1.

Table 1. Parameters of Equation (15).

Parameters Value According to References

µmax 1.1 d−1
Refer to the typical range of laboratory and
field research (0.5–1.2 d−1), and optimize
experimental data through model fitting.

Uehlinger et al. [31]

kinv 0.085 g−1·m2

The self-inhibitory effect of biomass on
growth rate was determined by fitting
experimental data using the least
squares method.

Graba et al. [30]

Cdet 0.0014 d−1

The effectiveness of using roughness
Reynolds number as a driving factor for
separation was verified through calibration of
its correlation with the separation process.

Fothi [32];
Labiod et al. [33]
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2.1.3. Error Analysis

Error analysis was conducted to determine the difference between the predicted and
measured data. The coefficient of determination R2 were calculated by the following equations

R2 = 1 − SSE
SST

, (15)

SST = ∑N
i=1(Yi − meanY)2, (16)

SSE = ∑N
i=1(Yi − Xi)

2, (17)

meanY =
1
N ∑N

i=1 Yi, (18)

where N is the number of lateral measuring points, and X and Y are the calculated and
measured values.

The specific steps of the numerical model are illustrated in Figure 4 below. First,
set initial conditions such as water depth and flow velocity, and initialize grid division
and relaxation variables. Subsequently, simulate fluid motion through particle migration,
calculate biofilm width and external forces using governing equations, then redistribute
particles and update the distribution function. These steps are cyclically executed until
reaching the preset time, after which the results are output.

 

Figure 4. The flowchart of the numerical model.

2.2. Validation Data

The validation data in this study were sourced from Graba et al. [30]. The experiment
was conducted in an indoor recirculating flume (Figure 5) measuring 11 m in length, 0.5 m in
width, and 0.2 m in depth, with artificial cobblestones (37 mm diameter, 20 mm height) laid
on the bottom to simulate a natural gravel riverbed. Under constant discharge (~14.4 m3/s)
and channel slope (10−3), water flow was regulated through a partial recirculation system
using filtered river water to exclude suspended matter and predators. Illumination was
provided by fluorescent daylight and red light lamps (16 h light/8 h dark photoperiod)
to maintain photosynthetically saturating light conditions (140–180 µmol m−2 s−1 PAR).
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Epilithic biofilms collected from natural streams were homogenized into suspensions and
inoculated into the flume. The experiment comprised two phases: an inoculation period
(3 weeks under closed circulation) and a growth period (65 days under open circulation).
Ten cobblestones were randomly sampled weekly, with 6 specimens analyzed for ash-free
dry mass (AFDM) and 4 for chlorophyll-a (Chl-a) quantification. AFDM was determined
through drying-combustion methods, while Chl-a was extracted using spectrophotometric
techniques. Weekly microscopic examinations were performed to identify dominant algal
species in selected samples.

 

Figure 5. The structure of the experimental flume.

3. Results
The biomass results are shown in Figure 6. The trend of AFDM reveals that during the

initial experimental phase (0–10 days), the biomass rapidly increased from the baseline to
approximately 20 g/m2, reaching a peak (25–30 g/m2) around day 15. This accumulation
occurred under relatively high roughness Reynolds numbers (a dimensionless parameter
reflecting flow-bed roughness interactions), which initially enhanced turbulence and nutri-
ent transport, facilitating biofilm growth. However, during the mid-phase (15–20 days), the
roughness Reynolds number decreased, corresponding to a stabilization of hydrodynamic
shear stress and the observed biomass peak. Subsequently, as the experiment progressed
(20–30 days), the roughness Reynolds number increased again due to intensified flow
velocity, leading to elevated hydraulic shear forces that triggered significant biofilm detach-
ment. By the end of the experiment, the biomass declined to 15–20 g/m2. The temporal
alignment of AFDM dynamics with the roughness Reynolds number—high (early), low
(mid), and high (late)—underscores its pivotal role in governing biomass accumulation
and loss. Specifically, high Reynolds numbers initially promoted growth but later exac-
erbated detachment, while the mid-phase low values allowed temporary stability [30].
This bidirectional relationship highlights hydrodynamic conditions as the key driver of
biomass heterogeneity.

The simulation results of flow velocity are shown in Figure 7, and the simulated flow
velocity exhibits good agreement. As observed in the figure, the flow velocity in the gravel
zone is initially higher because the porosity of the gravel is at its maximum during this stage.
Over time, as the biofilm begins to grow, the flow velocity in the gravel zone decreases
significantly, as the increased biofilm reduces the porosity of the gravel. Concurrently, since
the pores in the gravel are filled by the biofilm, the roughness decreases, leading to an
increase in flow velocity within the water zone. Finally, excessive biofilm growth within
the gravel causes the roughness of the gravel zone to rise again, at which point the flow
velocity in the water zone begins to decline.
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Figure 6. The simulated result of AFDM.

Figure 7. The simulated result of velocity ((a) presents vertical velocity distribution at 16 days,
(b) presents vertical velocity distribution at 33 days, (c) presents vertical velocity distribution at
38 days, (d) presents vertical velocity distribution at 61 days).

4. Discussion
4.1. Velocity Analysis

The study of hydrodynamic processes in traditional gravel-bed rivers has primarily
focused on the velocity distribution characteristics within the open-channel flow zone,
while relatively insufficient attention has been paid to hydrodynamic processes in the
hyporheic layer [34]. This research bias stems from dual technical constraints: First, sig-
nificant instrument penetration limitations exist in monitoring internal flow fields within
gravel porous media, making it challenging for current measurement techniques to obtain
reliable vertical velocity profile data [31–34]. Some studies have employed tracer methods
to measure water residence time in porous media [35,36], yet these approaches fail to
quantitatively characterize the vertical velocity distribution patterns within gravel layers.
Second, the velocity magnitude in the hyporheic layer is typically 1–2 orders of magnitude
lower than that of surface flow, often being regarded as a secondary influencing factor
through dimensional analysis [37]. Consequently, mainstream numerical models frequently
simplify gravel layers as fixed roughness boundary conditions. However, this simplified
approach presents theoretical deficiencies: when applying zero-velocity boundary condi-
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tions (i.e., setting the top boundary velocity of the hyporheic layer as u = 0 m/s), even while
maintaining constant bed slope and roughness parameters, the model outputs still exhibit
systematic negative deviations in near-bed velocity fields [38]. The comparative study
shown in Figure 7 demonstrates that by refining boundary condition settings (i.e., allowing
continuous velocity transition at the hyporheic layer interface), simulation accuracy of
near-bed flow fields can be significantly improved under identical roughness parameters.

4.2. Pollution Transport Analysis

Additionally, the flow velocity within the gravel layer exerts a dual regulatory role
on pollutant transport processes. The porous gravel matrix inherently possesses pollutant
adsorption capacity [39], while flow velocity not only governs the spatial distribution of
dissolved contaminants in the hyporheic zone but also determines adsorption efficiency
by modulating hydraulic retention time [40]. Specifically, reduced flow velocities enhance
pollutant retention by prolonging water–sediment interactions, whereas accelerated flow
may trigger adsorption–desorption dynamic equilibria under varying hydraulic gradients.
The development of biofilm communities demonstrates coupled dependence on hydrody-
namic conditions and contaminant transport dynamics [41]. Hydrodynamic shear stress
regulates biofilm colonization patterns through nutrient transport efficiency while govern-
ing biofilm detachment mechanisms via mechanical scouring effects [2]. Simultaneously,
pollutant fluxes serve dual functions as metabolic substrates for microbial communities
and chemical inducers for extracellular polymeric substance (EPS) secretion [42]. This
dual regulatory mechanism establishes a hydrodynamically modulated and chemically
constrained biofilm-mediated biogeochemical cycle.

4.3. Limitation of This Study
4.3.1. Limited Field Data

The existing model was primarily validated using laboratory-based data (e.g., artificial
gravel beds, constant flow rates), lacking adaptability testing in natural complex river
channels (e.g., non-uniform substrates, dynamic flows), which may limit the generaliz-
ability of its practical engineering applications. The model relies on empirical formulas to
describe biofilm growth and detachment, without fully considering the regulatory effects of
environmental factors (e.g., temperature, light, dissolved oxygen, nutrient concentrations)
on biofilm metabolic rates and structures, potentially leading to deviations in long-term
simulations. The coupling mechanisms between biofilms and sediment transport or pollu-
tant adsorption–desorption processes remain underexplored, particularly the unquantified
feedback effects of biofilms on substrate stability and pollutant migration pathways. Al-
though the LBM excels in handling complex boundaries, its high computational costs in
three-dimensional large-scale simulations restrict its potential for long-term temporal or
large spatial-scale applications. Validation data with limited temporal resolution (65 days)
and spatial granularity (single-layer sampling) fail to capture biofilm spatial heterogeneity
and transient response relationships with hydraulic conditions.

4.3.2. Homogeneous Growth Model

Although the model performs well in homogeneous gravel flumes, it is critical to
emphasize that the heterogeneous bed characteristics of natural rivers may significantly
undermine the predictive relationship between D50 and roughness defined in Equation (4).
Specifically, natural riverbeds exhibit multiscale heterogeneity: fluvial sorting processes
create longitudinal gradients in grain size distribution (e.g., alternating coarse armor layers
and fine sediment deposition zones), while benthic organism activities (e.g., burrowing
by chironomid larvae, bioturbation by snails) reshape microtopography, inducing spatial
variations in local porosity and roughness (Figure 7a). Such dynamic processes render
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Equation (4)—based on a static D50—insufficient to accurately estimate equivalent rough-
ness in reaches with strong biofilm–bed-flow interactions. Paudel et al. [43], through field
observations and numerical simulations, elucidated the mechanisms of bedform evolution
and highlighted two limitations of conventional homogeneity assumptions: (1) the neglect
of sheltering effects and rolling threshold disparities among multi-sized particles and
(2) periodic pore restructuring caused by bioturbation. To address these gaps, future work
should integrate a multi-grain interaction module into the current framework to quantify
the friction contribution weights of different grain fractions (e.g., D10, D50, D90) and their
dynamic adjustments under varying flow conditions (e.g., exposure of coarse grains under
high velocities). Additionally, methodologies such as discrete element modeling (DEM) for
particle migration simulation or zonal equivalent roughness partitioning (e.g., classifying
the bed into biofilm-covered zones, exposed gravel zones, and fine-sediment-filled zones)
could be adopted to enhance the model’s adaptability to complex natural beds.

4.4. Future Work

Future research directions include the following: Integrating biogeochemical variables
(e.g., temperature, light, nutrient concentrations) into the existing model to develop a
dynamically coupled biofilm growth–hydrology–water quality framework, enhancing the
authenticity of ecological process simulations. Establishing a cross-scale hydrodynamics-
ecology coupling framework that links microscopic biofilm dynamics (e.g., extracellular
polymeric substance secretion) with macroscopic river evolution processes to elucidate long-
term feedback mechanisms of biofilms on channel morphology. Validating the model in
diverse natural river systems (e.g., meandering channels, step-pool systems) and investigat-
ing the impacts of extreme hydrological events (e.g., flood scouring) on biofilm–hydraulic
interactions. Improving LBM computational efficiency via GPU parallelization or adaptive
mesh refinement to enable high-resolution, fully three-dimensional, long-term simulations.
Developing biofilm regulation strategies (e.g., artificial substrate design, flow regulation
schemes) based on model outputs to provide quantitative decision-making tools for river
ecological restoration, such as optimizing biofilm coverage to balance hydraulic resistance
with pollutant purification efficiency.

5. Conclusions
This study systematically investigated the coupled mechanisms between biofilm

dynamic evolution and hydrodynamics in gravel-bed channels by developing a numerical
model based on the LBM. The key findings are summarized as follows:

(1) Nonlinear Modulation of Hydraulic Roughness by Biofilm: Biofilm growth exhibits a
dual-phase regulatory mechanism. Moderate colonization reduces equivalent rough-
ness by smoothing interstitial gravel pores, while excessive accumulation forms emer-
gent biological structures, significantly increasing flow resistance. This highlights the
dynamic equilibrium role of biofilm in modulating hydraulic characteristics.

(2) Model Validation and Applicability: Validation against laboratory flume data (65-
day biofilm growth cycle) demonstrated the model’s accuracy in simulating biomass
trends (ash-free dry mass) and velocity distribution patterns, confirming its reliability
under short-term, homogeneous substrate conditions.

(3) Theoretical Innovation and Engineering Value: By establishing a dynamic correlation
model between biofilm thickness and roughness parameters, this study addresses
the limitations of conventional models that neglect biofilm–flow coupling effects. It
provides a numerical platform for optimizing ecological river restoration strategies,
such as balancing pollutant removal efficiency with hydraulic resistance.
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